60 research outputs found

    Risk-Based Optimal Operation of Coordinated Natural Gas and Reconfigurable Electrical Networks with Integrated Energy Hubs

    Get PDF
    Abstract This paper elaborates on optimal scheduling of coordinated power and natural gas (NG) networks in the presence of interconnected energy hubs considering reconfiguration as a flexibility source. With regard to the energy hub system consisting of several generation units, storage and conversion technologies, as well as natural gas‐fired units, the high interdependency between gas and electricity carriers should be captured. The hourly reconfiguration capability is developed for the first time in a multi‐energy system to enhance the optimal power dispatch and gas consumption pattern. The realistic interdependency of electrical and NG grids is investigated by employing the steady‐state Weymouth equation and AC‐power flow model for power and gas networks, respectively. Furthermore, to handle the risk associated with strong uncertainty of wind power, load, and real‐time power price, the conditional value at risk approach is employed. The proposed model is implemented on the integrated test system and simulation results are presented for different cases. The impact of the risk aversion level on operating cost and optimal scheduling of controllable units is examined. Numerical results demonstrate that reconfigurable capability reduces the operational cost up to 7.82%

    An Analytical Framework for Evaluating the Impact of Distribution-Level LVRT Response on Transmission System Security

    Get PDF
    Low voltage ride through (LVRT) is a solution to increase the tolerance of distributed energy resources (DERs) against the voltage sags. However, the possibility of DERs trip according to the present grid codes exists. Such trips are essential for transmission systems with connected DER-penetrated distribution networks (DPDNs). This paper investigates an analytical framework to see the impact of distribution-level LVRT response on transmission system security. LVRT response stands for the total amount of lost DER capacity due to the inability to meet the LVRT requirement during the voltage sag. This generation loss in the distribution sector can expose the transmission network to lines overloading after fault clearance. The proposed novel approach is based on a source contingency analysis that lets TSOs conduct an LVRT-oriented security assessment. A mathematical function is defined as the LVRT response function of DPDNs. This function gives the lost DER capacity in response to the transmission level transient faults and is constructed by distribution system operators (DSOs). The TSO can use these functions to assess the loading security of transmission lines in post-clearance conditions. In this analytical framework, LVRT-oriented security is evaluated by calculating the risk of lines overloading under a large number of random faults.The proposed approach is implemented in two test power systems with a considerable DER penetration level to obtain the risk of line overloading due to the LVRT response in distribution networks.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    A general mathematical model for LVRT capability assessment of DER-penetrated distribution networks

    Get PDF
    Low voltage ride through (LVRT) is one of the indispensable issues of recent decade in the context of grid codes. LVRT stands for the ability of a generation facility to stay connected during the voltage dip. Despite the numerous discussions in recent works, but they mostly concentrate on the LVRT-based control of distributed energy resources (DERs) integrated into a microgrid and its improvement. However, what has been hidden and not addressed any more yet is an index to measure the LVRT capability of a DER-penetrated distribution network (DPDN) under different voltage sags. This takes precedence when we want to evaluate the LVRT capability of DPDNs with consideration of various LVRT categories of DERs mandated in IEEE 1547 standard. This paper introduces a general framework for LVRT assessment of a DPDN by solving a system of differential algebraic equations (DAEs). Then expected LVRT capability of a DPDN is evaluated by a proposed LVRT index through the implementation of Monte Carlo simulation technique.This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Support Vector Machine-Assisted Improvement Residential Load Disaggregation

    Get PDF
    corecore